Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Chem Lett ; 20(1): 71-80, 2022.
Article in English | MEDLINE | ID: covidwho-2268683

ABSTRACT

Airborne black carbon is a strong warming component of the atmosphere. Therefore, curbing black carbon emissions should slow down global warming. The 2019 coronavirus pandemic (COVID-19) is a unique opportunity for studying the response of black carbon to the varied human activities, in particular due to lockdown policies. Actually, there is few knowledge on the variations of black carbon in China during lockdowns. Here, we studied the concentrations of particulate matter (PM2.5) and black carbon before, during, and after the lockdown in nine sites of the Yangtze River Delta in Eastern China. Results show 40-60% reduction of PM2.5 and 40-50% reduction of black carbon during the lockdown. The classical bimodal peaks of black carbon in the morning and evening rush hours were highly weakened, indicating the substantial decrease of traffic activities. Contributions from fossil fuels combustion to black carbon decreased about 5-10% during the lockdown. Spatial correlation analysis indicated the clustering of the multi-site black carbon concentrations in the Yangtze River Delta during the lockdown. Overall, control of emissions from traffic and industrial activities should be efficient to curb black carbon levels in the frame of a 'green public transit system' for mega-city clusters such as the Yangtze River Delta. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10311-021-01327-3.

2.
J Environ Sci (China) ; 122: 115-127, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1472038

ABSTRACT

The coronavirus (COVID-19) pandemic is disrupting the world from many aspects. In this study, the impact of emission variations on PM2.5-bound elemental species and health risks associated to inhalation exposure has been analyzed based on real-time measurements at a remote coastal site in Shanghai during the pandemic. Most trace elemental species decreased significantly and displayed almost no diel peaks during the lockdown. After the lockdown, they rebounded rapidly, of which V and Ni even exceeded the levels before the lockdown, suggesting the recovery of both inland and shipping activities. Five sources were identified based on receptor modeling. Coal combustion accounted for more than 70% of the measured elemental concentrations before and during the lockdown. Shipping emissions, fugitive/mineral dust, and waste incineration all showed elevated contributions after the lockdown. The total non-carcinogenic risk (HQ) for the target elements exceeded the risk threshold for both children and adults with chloride as the predominant species contributing to HQ. Whereas, the total carcinogenic risk (TR) for adults was above the acceptable level and much higher than that for children. Waste incineration was the largest contributor to HQ, while manufacture processing and coal combustion were the main sources of TR. Lockdown control measures were beneficial for lowering the carcinogenic risk while unexpectedly increased the non-carcinogenic risk. From the perspective of health effects, priorities of control measures should be given to waste incineration, manufacture processing, and coal combustion. A balanced way should be reached between both lowering the levels of air pollutants and their health risks.


Subject(s)
Air Pollutants , COVID-19 , Adult , Air Pollutants/analysis , COVID-19/epidemiology , Carcinogens , Child , China/epidemiology , Coal/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , Risk Assessment , Seasons
3.
Environ Pollut ; 267: 115612, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-753608

ABSTRACT

To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM2.5) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019-23 January 2020) and control period (CP, 24 January-23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM2.5 and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM2.5 was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM2.5 from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , China , Disease Outbreaks , Environmental Monitoring , Humans , Pandemics , Particulate Matter , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL